Information Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs
Revisiting some algorithms from lecture 6:
Some not-so-good sorting approaches
Bitonic sort
QuickSort

Concurrent kernels and recursion

46(85)

Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms
Many sorting algorithms are highly sequential
Suitable for parallel implementation?

- Data driven execution

- Data independent execution

47(85)

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution
Computing pattern depends on data
Usually harder to parallellize!

Example: QuickSort.

48(85)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern
Easier to parallellize - always the same plan

Example: Bitonic sort

49(85)

Jj Information Coding / Computer Graphics, ISY, LiTH
P/

Bubble sort

Loop through data, compare neighbors
Extremely sequential
Inefficient
Parallel version: Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, “odd phase” and ”“even phase” (shifted one step)

50(85)

lllllllllll

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH
5

Bubble sort, parallel version
Bubble sort with odd-even transposition method
Compare all items pairwise
Two phases, "odd phase” and “even phase” (shifted one step)

Fully sorted after n phases

Even phase

Odd phase

O(n2)

51(85)

g Information Coding / Computer Graphics, ISY, LiTH
44

Suitable for GPU?

Not as bad as it seems at first look:
- Data independent
- Excellent locality
* Pretty good possibilities to use shared memory (but with
some costly transfers at edges between blocks). Thus close
to optimal in global memory transfers.

- But certainly not optimal at very large sizes

“Better” algorithms don’t necessary beat this all that easily!

52(85)

~—d”‘; Information Coding / Computer Graphics, ISY, LiTH
e

Rank sort
Count number of items that are smaller
Easy to parallelize:
* One thread per item
- Loop through entire data

« Store in index decided from count of number of smaller
items.

53(85)

g Information Coding / Computer Graphics, ISY, LiTH
-

Suitable for GPU?

Again, not as bad as it seems at first look:
- Data independent

- Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.

- Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!

54(85)

..........

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(As described in Kessler 2.3)

Bitonic set: Two monotonic parts in different direction.

55(85)

12} Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum at
k, consisting of two monotonic parts, one increasing, a- (from
item 1 to k) and one decreasing, a* (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(az, ak+2)...
a” = max(a{, ak+1), max(az, ak+2)...

These two sets are also bitonic and max(a’) = min(a”)!

.
- + A
d d 3

56(85)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence:
partially sorted

The parts must be sorted. Sort them by
bitonic sort!

57(85)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort example

7 ¢ 1 1 ‘ 1 1 1 ‘ 1
1 7 J 3 3 3 J 2 2
8 A 8 J 8 7 4 J 4 3
3 3 7 ¢ 8 2 3 ‘ 4
5 5 5 T 6 Y 6 6 ‘ 5
6 V 6 T 6 5 V 5 l 5 6
y) 4 T 4 4 V| 7 l 7 i 7
4 T 2 2 T 2 V 8 8 8
Bitonic sort of Bitonic sort of main
smaller parts part
Reverse parts Reverse parts

(bitonic merge) (bitonic merge)

58(85)

= - OMNg, a
A\ [-

- %
s , *
- -

. -
. T VE
’l
|
' .

Information Coding / Computer Graphics, ISY, LiTH

Bigger example

The problem scales nicely, uniformly

A

Vv ‘?_t

alli,

Tian

SEALIEALIEIL oL,

n

EYEONE,

SEIRIEILILIRIE

SEIEICIRIEIRIE.

v

v

v

¥ ¥
\ ¥
¥ Y

SEIEICIRIEIRIE.

EAEIEE,

More stages gives

onger stages

(Image inspired by one from Wikipedia)

59(85)

Information Coding / Computer Graphics, ISY, LiTH

[+ [[+]F [+

ESSPESIECIpES .

PR e
e PR e e i s PHe
R EECE e i
2wy e s e e
e e S e
congitn e W e et
bl R A b
T T e I T

OQOooO~NOYULT A~ WDN -

—) e e e e oe— —)
ONnDhwmNn—=O

60(85)

Jj Information Coding / Computer Graphics, ISY, LiTH
4

-“l
4,
»'\r; o B

Get those steps right
Step length
Step direction
Comparison direction

Calculated from stage number and stage
length

61(85)

llllllll

Information Coding / Computer Graphics, ISY, LiTH

Code examples
Sequential
Recursive example

Iterative example

62(85)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
- Data independent, no worst case
- Fast: O(n‘log2n) (Why?)
- Good locality in some parts

but

- Big leaps in addressing for some parts

63(85)

Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?

Small leaps: Can be computed within one block.
Shared memory friendly.

Big leaps (>number of threads/block): No
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!

64(85)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort

Very popular algorithm for sequential implementation

Choose pivot

AR
N
Compare to pivot, form
/ 7\ two subsets, repeat
F | ¥

A

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal

65(85)

. COMNG .,
$
- .4’
J #
~ -
. -
>
. -
’t
1
4
.« VP

Information Coding / Computer Graphics, ISY, LiTH

QuickSort is

Fast: O(n-logn) in typical cases
O(n2) in the worst case
Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing
but optimal

66(85)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU

Initially ignored as impractical
CUDA implementations exist

Data driven approaches increasingly suitable as
GPUs become more flexible

67(85)

Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort

Several stages to consider:
* Pivot selection. Usually just grab one.
- Comparisons
* Partitioning

 Concatenate result

68(85)

Information Coding / Computer Graphics, ISY, LiTH

Pivot selection

If we could always pick a pivot that splits the data in half...

11;

/ i

I\ b o 7=
Th'atkv\"uomql be greeat...

!
!

69(85)

@ Information Coding / Computer Graphics, ISY, LiTH

but you can’t do that without sorting! (Or a
histogram.) But how about a random one?

[TOUR OF ACCOUNTING

% NINE NINE r ¢gs THAT'S THE
OVER HERE NINE NINE 2 SURE PROBLEM
WE HAVE OUR g NINE NINE “| THATS WITH RAN-
GENERATOR.. : YOU CAN

E 3 NEVER BE

g - SURE.

: :

© s

: 3

There is a worst case caused by bad pivots. Live with it!

70(85)

Information Coding / Computer Graphics, ISY, LiTH

Comparisons
Easy to parallelize

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)

No problem!

71(85)

g Information Coding / Computer Graphics, ISY, LiTH
4

“
‘v»’“. "~

Partitioning
The big problem!
Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer

72(85)

Information Coding / Computer Graphics, ISY, LiTH

In-place sorting not feasible

Split to two list of same size as original. Massive
number of threads!

Then we must pack to smaller size.

A BI[C/DE|FG|H

73(85)

Information Coding / Computer Graphics, ISY, LiTH

Packing to smaller size not trivial
Data dependent

Use parallel prefix sum to create a look-up table for
addressing. (Kessler 1.6.3)

Computes sum of all previous items.

74(85)

llllllll

Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum

Similar to reduction but full output.

#1 | #1+2 | #3 | #1.4 | #5 | #5+6 | #7 | #1.8
#1 | #1+2 | #3 | #1.4 | #5 | #5+6 | #7 | #5.8
#1 | #1+2 | #3 | #3+4 | #5 | #5+6 | #7 | #7+8

1

1

1

1

#1

#2

#3

#4

#5

#6

#7

#8

#1 #1+2 #3 #1. #5 #5+6 #7 #1..8
Zero
#1 #1+2 #3 #5+6 #7

75(85)

OIMNe

Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum

Example
3 8 18 4 5 2 30 18 4 5 2 30
— T Zero

3 8 18 4 5 2 12 18 4 5 2 0

/? /? Zero e

o - D PP UL
3 8 9 4 5 2 7 0 4 5 2 18
3 8 1 4 1 2 5

76(85)

lllllllll

___—— 1
_—1 _—1
1 1 1t A"

0 1
Zer
0 1
0 1
0 1
3 3

77(85)

1?} Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum on GPU

* No reason to use few threads. Use as many as
you have output items.

* Multiple kernel runs to adapt to problem size
variation.

- As described above, nhon-coalesced. Pack
intermediate values for coalescing. If using shared
memory, risk of bank conflicts. [Capannini]

78(85)

Information Coding / Computer Graphics, ISY, LiTH

Thus, QuickSort is not impossible, but more
complex than before.

Note:
GPUs have Compare-And-Swap atomics!

GPUs favor massive numbers of threads. One
thread per comparison is more than OK!

Implementations available. Example:

https://sourceforge.net/projects/cuda-quicksort/

See also Kessler Ch 2

79(85)

Information Coding / Computer Graphics, ISY, LiTH

Recursion
GPUs can’t do recursion efficiently... or can they?
Since Kepler we have concurrent kernels
Not only a matter of launching kernels from CPU!
A kernel can spawn new kernels!

Do recursion by spawning new kernels!

80(85)

IIIIII

Information Coding / Computer Graphics, ISY, LiTH

Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.

I . (I

=:m nnfinfin 0 [0 (I (0 (0

- M (0
I

81(85)

. COMNG

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

__global vwveoid quicksort(int ¥*data, int left, int right)
{

int nleft, nright;

cudaStream t sl, s2;

// Partitions data based on pivot of first element.
// Returns counts in nleft & nright

partition(data+left, data+right, data[left], nleft, nright); But doeS thlS rea”y

// If a sub-array needs sorting, launch a new grid for it. dO d gOOd jOb on
// Note use of streams to get concurrency between sub-sorts partitioning?
if(left < nright) {

cudaStreamCreateWithFlags(&sl, cudaStreamNonBlocking);

quicksort<<< ..., sl >>>(data, left, nright);

}
if(nleft < right) {

cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking) ;
quicksort<<< ..., 82 >>>(data, nleft, right);

}

__host void launch quicksort(int *data, int count)
{

qguicksort<<< ... >>>(data, 0, count-1);

}

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

82(85)

..........

‘g Information Coding / Computer Graphics, ISY, LiTH
. 4

Advantages
- Less work for CPU
- Less synchronizing (from CPU side)

- Easier programming!

Quicksort Performance
Dynamic Parallel vs. Host-Controlled

=N

They claim it matters
this much (but your
milage will vary)

T InI N YANI A AU TAN,

yu“ _U,_"'_ 1 v'-“"-"‘l\“ : ”r" I ' 1 "?’1_1: | 'J ‘ v B '.1 |]
'I } ‘ | (1 ‘ |
: | . | | | | |

N
o
|
I

w
|

™
o
!

_.J s CPU Launch
e GPU Launch

?’
4
1
1
1

- .

Relative Sorting Performance
0o

o
n

o

Increasing Problem Size

83(85)

d Information Coding / Computer Graphics, ISY, LiTH
P/

“
4
A"\r.’ « VP

Recursive CUDA kernels, a significant
improvement

Southfork and Signal&Bild have GPUs that support it.

84(85)

. %
Yy .

Information Coding / Computer Graphics, ISY, LiTH

That's all folks!

85(85)

